Gambarkangrafik fungsi kuadrat yang ditentukan dengan persamaan f(x) = x2 +2x, jika aderah asalnya adalah D = {x/-4 ≤ x ≤ 2, x ∈ R} Jawab: Grafik fungsi kuadrat f(x) = x2 + 2x adalah sebuah parabola dengan persamaan y = x2 + 2x. Langkah 1: Kita buat tabel atau daftar untuk menentukan titik-titik yang terletak pada fungsi f. x -4 -3 -2 -1PembahasanIngat persamaan umum fungsi kuadrat adalah a x 2 + b x + c = 0 1. Menentukan titik potong terhadap sumbu x . x 2 − 6 x + 8 = 0 x − 4 x − 2 = 0 x = 4 atau x = 2 Maka titik potong di sumbu x adalah 4 , 0 dan 2 , 0 . 2. Menentukan titik potong terhadap sumbu y. f 0 = 0 2 − 6 ⋅ 0 + 8 = 8 Jadi titik potong terhadap sumbu yadalah 8 , 0 . 3. Menentukan sumbu simetri. x = 2 a − b ​ = 2 ⋅ 1 − − 6 ​ = 3 4. Menentukan nilai minimum. y = − 4 a b 2 − 4 ⋅ a ⋅ c ​ = − 4 ⋅ 1 − 6 2 − 4 ⋅ 1 ⋅ 8 ​ = − 1 5. Menentukan koordinat titik balik . Koordinat titik balik adalah 3 , − 1 Dengan demikian,sketsa grafik fungsi adalah sebagai berikutIngat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Maka titik potong di sumbu x adalah . 2. Menentukan titik potong terhadap sumbu y. Jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri. 4. Menentukan nilai minimum. 5. Menentukan koordinat titik balik . Koordinat titik balik adalah Dengan demikian, sketsa grafik fungsi adalah sebagai berikut
Gambarlahgrafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = 0. Lengkapi ketiga tabel berikut ini! 5. Pada kertas berpetak gambar pasangan titik ( x,y) dari tabel-tabel diatas dalam satu kertas berpetak dengan warna pensil/pulpen yang berbeda 6. Hubungkan titik – titik hingga membentuk garis lengkung berbentuk kurva mulus
Ada lima langkah yang dibutuhkan untuk menggambar grafik fungsi kuadrat. Lima langkah menggambar grafik fungsi kuadrat antara lain menentukan titik potong dengan sumbu-x, titik potong dengan sumbu-y, letak sumbu simetri, titik-titik balik, dan menghubungkan titik-titik diperoleh. Hasil grafik fungsi persamaan kuadrat berupa kurva mulus yang sering disebut juga dengan parabola, seperti membentuk huruf U. Bentuk parabola dari suatu fungsi kuadrat dapat terbuka ke atas atau terbuka ke bawah. Letak parabola dari fungsi kuadrat dapat terletak di atas sumbu-x definit positif, di bawah sumbu-x definit negatif, memotong sumbu-x pada satu titik, atau memotong sumbu-x pada dua titik. Di mana bentuk parabola tersebut bergantung pada fungsi kuadrat yang membentuknya. Baca Juga Cara Menentukan Fungsi Kuadrat Jika Diberikan Gambar Parabola Apa saja yang perlu dilakukan untuk menggambar grafik fungsi kuadrat? Bagaimana cara menggambar grafik fungsi kuadrat? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Sketsa Grafik Fungsi Kuadrat Nilai Diskriminan D Koefisien dari Pangkat Tertinggi a Hasil Sketsa Parabola Langkah-Langkah Menggambar Grafik Fungsi Kuadrat Contoh Cara Menggambar Grafik Fungsi Kuadrat Langkah 1 Menentukan titik potong dengan sumbu x Langkah 2 Tentukan titik potong dengan sumbu y Langkah 3 Menentukan sumbu simetri grafik fungsi kuadrat Langkah 4 Menentukan titik puncak Langkah 5 Menggambar Grafik Fungsi Kuadrat Fungsi kuadrat adalah persamaan dengan variabel yang mempunyai pangkat tertinggi sama dengan dua. Contoh fungsi kuadrat adalah fx=x2, fx= x2–1, y=2x2–3x–5, dan lain sebagainya. Secara umum, fungsi kuadrat dinyatakan dalam persamaan umum y = ax2 + bx + c. Sketsa atau gambaran awal dari grafik persamaan kuadrat dapat diketahui melalui nilai diskriminan D dan nilai di depan pangkat tertinggi __2 . Sketsa awal tersebut akan memberikan gambaran apakah parabola terbuka ke atas atau terbuka ke bawah. Selain itu juga akan memberikan gambaran di manakah letak parabola terhadap sumbu-x. Nilai Diskriminan D Nilai diskriminan D dari sebuah fungsi kuadrat fx = ax2 + bx + c adalah D = b2 – 4ac. Diskriminan digunakan untuk menyelidiki berapa banyak akar-akar yang dimiliki suatu persamaan kuadrat. Selain itu, diskriminan dapat digunakan untuk menentukan jenis akar yang dimiliki suatu persamaan kuadrat. Karakteristik grafik fungsi kuadrat berdasarkan nilai diskriminan D D > 0 memotong sumbu x pada dua titik memiliki dua akar real berbeda.D = 0 memotong sumbu x pada satu titik memiliki satu akar real kembar.D 0 maka grafik akan terbuka ke atasJika a 0, grafik berada di atas sumbu x dan semua nilai fungsi kuadrat adalah positif. Kondisi saat semua nilai fungsi kuadrat bernilai positif disebut dengan definit positif. Saat nilai diskriminan D 0 dan D = 36 sehingga D = 0. Sehingga, gambar yang akan diperoleh adalah terbuka ke atas dan memotong dua titik x. Nilai a = 1 > 0 artinya grafik akan terbuka ke atasNilai D = b2 – 4ac = –22 – 41–8 = 4 + 32 = 36, nilai D > 0 artinya grafik akan memotong sumbu x pada dua titik Sketsa gambarnya kurang lebih akan seperti gambar di bawah. Secara lebih detail, gambarnya dapat dilihat dengan mengikuti langkah-langkah berikut. Langkah 1 Menentukan titik potong dengan sumbu x Titik potong dengan sumbu x terjadi ketika nilai fungsi y = 0y = 0x2–2x–8 = 0x–4x+2 = 0 Diperoleh x=4 atau x =–2, sehingga titik potong dengan sumbu x terletak pada koordinat 4, 0 dan -2, 0. Langkah 2 Tentukan titik potong dengan sumbu y Titik potong dengan sumbu y terjadi ketika nilai x=0y=x2–2x–8y=02–0–8= –8Jadi, titik potong dengan sumbu y adalah 0, –8. Langkah 3 Menentukan sumbu simetri grafik fungsi kuadrat Sumbu simetri grafik fungsi kuadrat dipeneuhi pada saat nilai absis x = – b/2a. Dari persamaan y= x2–2x–8 diperoleh bahwa a = 1, b = –2, dan c = –8. Sehingga sumbu simetri parabola terletak pada x = ––2 /21 = 1. Langkah 4 Menentukan titik puncak Titik puncak parabola dengan persamaan umum y = ax2 – bx – c berada di koordinat – b/2a, b2 – 4ac. Cara menenetukan koordinay titik puncak juga dapat dilakukan denga cara menggunakan xp pada langkah ke-3 kemudian substitusi xp pada persamaan y untuk mendapatkan yp. xp = –b/2a = ––2/2 = 1y p =–b2 – 4ac/4a = ––22 – 41–8/41 = –36/4 = –9 Atau dapat denga cara substitusi nilai xp = 1 hasil perhitungan pada Langkah 3 pada persamaan yp = x2 – 2x – 8. sehingga diperoleh y = 12 – 21 – 8 = –9. Diperoleh koordinat titik puncaknya adalah 1, –9. Langkah 5 Menggambar Grafik Fungsi Kuadrat Selanjutnya tinggal menghubungkan titik-titik yang diperoleh sehingga menjadi kurva mulus seperti terlihat pada gambar berikut. Diperoleh parabola dengan titik puncak 1, –9, memotong sumbu y pada –8, 0, serta memotong sumbu x pada dua titik yaitu titik –9, 0 dan 4, 0. Demikianlah tadi ulasan proses dan langkah-langkah menggambar grafik fungsi kuadrat. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Cara Menentukan Persamaan Kuadrat Barudapatmenggambar grafik fungsi kuadrat bentuk f x ax ,2 f x a x h , 2 dan f x a x h k. Gambarlah suatu garis yang melalui titik (2,3) dan mempunyai gradien seperti berikut ini. Karena grafik setiap fungsi linear adalah garis, mungkin Anda menduga bahwa setiap garis adalah fungsi linear. Dugaan ini tidak benar karena garis
Di kelas 9, kamu sudah belajar sedikit mengenai fungsi kuadrat. Nah di kelas 10 ini, kamu akan belajar bagaimana caranya merumuskan fungsi kuadrat berdasarkan grafik. Penasaran? Simak penjelasannya berikut ini, ya! — Siapa di sini yang suka main game Angry Birds? Game yang sempat viral pada masanya itu, merupakan permainan di mana kita menembakkan burung menggunakan bantuan ketapel ke arah kastil musuh yaitu si babi hijau, supaya kastil mereka hancur. Angry Birds Sumber Kamu tahu nggak sih, pada game tersebut, burung yang kita lempar menggunakan ketapel akan membentuk lintasan parabola yang bentuknya seperti grafik fungsi kuadrat, lho! Ciri-Ciri Grafik Fungsi Kuadrat Grafik fungsi kuadrat memiliki beberapa ciri, di antaranya yaitu 1. Berbentuk parabola 2. Grafiknya simetris 3. Hanya memiliki titik maksimum saja atau titik minimum saja, namun tidak keduanya Nah, dari grafik fungsi kuadrat, kita bisa merumuskan fungsi kuadratnya lho! Gimana ya, caranya? Eits, tapi sebelum masuk ke pembahasan itu, kita kilas balik sebentar yuk, ke materi fungsi kuadrat di kelas 9. Kamu masih ingat kan, tentang fungsi kuadrat? Kalau kamu lupa, coba cek videonya di ruangbelajar, deh! Bentuk Umum Fungsi Kuadrat Fungsi kuadrat merupakan aturan yang memasangkan semua anggota daerah asal tepat satu ke daerah kawan dengan pangkat pada variabel tertingginya adalah dua. Baca juga Cara Menyusun Persamaan Kuadrat Bentuk umum dari fungsi kuadrat yaitu fx = ax2 + bx + c, dengan keterangan sebagai berikut. Keterangan a = koefisien dari x2, di mana a ≠0 b = koefisien dari x c = konstanta Nah, sekarang yuk, kita masuk ke pembahasan utama kita yaitu merumuskan fungsi kuadrat berdasarkan grafik! Cara Merumuskan Fungsi Kuadrat Berdasarkan Grafik Sebelum merumuskan fungsi kuadrat berdasarkan grafik, kita harus lihat dulu nih, nilai apa yang diketahui pada grafik tersebut, karena rumus yang akan kita pakai tergantung dari nilai apa yang diketahui pada grafik. Ada tiga macam rumus yang bisa kita pakai untuk merumuskan fungsi kuadrat berdasarkan grafik, yaitu 1. Jika pada grafik diketahui 2 titik sembarang pada sumbu x, maka menggunakan rumus y = ax – x1x – x2 2. Jika pada grafik diketahui titik puncak xp, yp dan 1 titik sembarang, maka menggunakan rumus y = ax – xp2 + yp 3. Jika pada grafik diketahui 3 titik sembarang, maka menggunakan bentuk umum fungsi kuadrat yaitu y = ax2 + bx + c, lalu gunakan eliminasi untuk mencari nilai a, b, dan c Supaya kamu lebih paham, coba perhatikan infografik berikut, ya! Baca juga Yuk, Belajar Fungsi Komposisi & Contohnya, Lengkap! Sekarang, kita lanjut mengerjakan latihan soal, yuk! Contoh Soal Grafik Fungsi Kuadrat Sekarang, kita kerjakan contoh soal, yuk! Coba kamu perhatikan grafik berikut Dari grafik tersebut, diketahui titik puncak atau titik balik dari suatu fungsi kuadrat, yaitu di titik 2, 1. Selain itu, diketahui juga 1 titik sembarang yaitu 1, 2. Coba rumuskan fungsi kuadratnya! Jawaban Diketahui dari soal bahwa xp, yp = 2, 1 Titik sembarang = 1, 2 Nah, sesuai penjelasan tadi, jika pada grafik diketahui titik puncak xp, yp dan 1 titik sembarang, maka kita menggunakan rumus y = ax – xp2 + yp Yuk, kita coba uraikan! y = ax – xp2 + yp 2 = a1 – 22 + 1 2 = a-12 + 1 2 = a1 + 1 2 = a + 1 a = 2 – 1 a = 1 Karena titik puncaknya di 2, 1 dan nilai a = 1, maka fungsi kuadratnya y = ax – xp2 + yp y = 1x – 22 + 1 y = x2 – 4x + 4 + 1 y = x2 – 4x + 5 Selesai, deh! Jadi, dari grafik tersebut dapat kita rumuskan bahwa fungsi kuadratnya adalah fx = x2 – 4x + 5. Gimana? Gampang, kan? Kalau kamu ingin tahu bagaimana cara merumuskan fungsi kuadrat berdasarkan grafik menggunakan kedua rumus lainnya, kamu bisa cek penjelasannya di video belajar beranimasi yang ada di ruangbelajar, lho! Yuk, langganan sekarang! Referensi Sinaga, B. dkk. 2017. Matematika untuk SMA/MA/SMK/MAK Kelas X Kurikulum 2013 Edisi Revisi 2017. Jakarta Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud. Sumber Gambar GIF Angry Birds’ [Daring]. Tautan Diakses 10 Agustus 2021 Artikel ini telah diperbarui pada 17 November 2022.
GrafikFungsi Kuadrat Y X2 4x 4 Bserta Gambar Grafik Brainly Co Id . 5X E sy ksih bntang 5 klo di jwab Sebelumnya Berikutnya Mengetahui semua jawaban. Contoh soal grafik fungsi kuadrat brainly. Makna atau hakikat bentuk negara dan sistem pemerintahan Bentuk ialah satu titik temu antara ruang dan massaBentuk juga merupakan penjabaran geometris Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videosoal yaitu Gambarkan grafik fungsi kuadrat berikut dimana fungsi kuadratnya adalah x kuadrat min 5 x + 6 sebelum menggambar grafik di sini kita akan menganalisis karakteristik dari grafik fungsi tersebut perhatikan bahwa pada fungsi tersebut nilai a-nya atau koefisien dari X kuadrat maka di sini nilai a-nya artinya lebih dari nol fungsi kuadrat yang nilainya lebih dari 0, maka grafiknya akan terbuka ke atas untuk langkah selanjutnya kita akan mencari nilai diskriminan yaitu b kuadrat min 4 AC pada fungsi tersebut nilai b nya karena koefisien dari X2 nilai C adalah 6 sehingga Min 5 dikuadratkan Min 4 dikalikan a nya 1 dan C nya adalah6 = 25 min 24 = 1 sehingga dari sinilah maka artinya d-nya atau diskriminannya lebih dari nol fungsi kuadrat yang nilai diskriminannya lebih dari nol maka grafiknya akan memotong sumbu x di dua Titik maka disini kita akan mencari titik perpotongan tersebut yang berada pada sumbu x di sini artinya adalah titik potong sumbu x maka Y = X kuadrat min 5 x + 60 = x kuadrat min 5 x + 6 akan kita faktorkan menjadi X min 3 dikalikan dengan X min 2 sehingga untuk nilaiMasing-masing adalah 3 atau x = 2 maka titik potong terhadap sumbu x nya adalah 2,0 dan 30. Selanjutnya kita akan mencari titik potong terhadap sumbu y maka artinya nilai x nya adalah 0 sehingga Y = X kuadrat min 5 x + 6 maka y = 0 kuadrat min 5 x 06 sehingga nilainya sama dengan 6 dari sinilah titik potong terhadap sumbu y adalah a 0,6 selanjutnya kita akan mencari titik puncak grafik tersebut didapatkan dari min b per 2 A negatif diskriminan perempata dimana nilai P nya adalah Min 5 maka Min dari negatif 5 adalahper 2 dikalikan a nya adalah 1 koma negatif diskriminan maka negatif 1 per 4 dikalikan a nya adalah 1 sehingga 5 per 2 koma 1 per 4 akan kita ubah dalam bentuk desimal maka menjadi 2,5 kemudian Maka selanjutnya kita akan menggambarkan titik-titik tersebut ke dalam diagram untuk titik potong terhadap sumbu x nya adalah 2,02 pada sumbu x 0 pada sumbu y dan 3,0 selanjutnya titik potong terhadap sumbu y adalah 0,60 pada sumbu x dan 6 pada sumbu y kemudian titik puncaknya adalah 2,5 ini adalah titik 2,5koma Min 0,205 maka ini adalah titik Min 0,25 selanjutnya pertemuan titik tersebut berada di sini untuk membentuk suatu grafik maka kita akan menggabungkan titik-titik tersebut dimulai dari titik yang memotong sumbu y kemudian memotong sumbu x lalu melalui pusat dan memotong sumbu x lagi ternyata benar bahwa grafik tersebut memotong sumbu x di dua titik yaitu 2 dan dan terbuka ke atas sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul B Langkah – Langkah dalam Membuat Grafik Fungsi Kuadrat Berikut ini langkah-langkah dalam menggambar grafik fungsi kuadrat : 1. Tentukan titik potong e B @(A) B CAD E FA E G terhadap sumbu x, yaitu nilai Gambarlah grafik fungsi kuadrat f(x) B – x2 E 4x E 12 a B O1 bB4 c B O12 Titik potong terhadap sumbu x maka y B 0 Fungsi kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Fungsi ini berkaitan dengan persamaan kuadrat. Bentuk umum persamaan kuadrat adalah Sedangkan bentuk umum dari fungsi kuadrat adalah Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta . Fungsi kuadrat fx dapat juga ditulis dalam bentuk y atau Dengan x adalah variable bebas dan y adalah variable terikat. Sehingga nilai y tergantung pada nilai x, dan nilai-nilai x tergantung pada area yang ditetapkan. Nilai y diperoleh dengan memasukan nilai-nilai x kedalam fungsi. Grafik Fungsi Kuadrat Fungsi kuadrat dapat digambarkan ke dalam koordinat kartesius sehingga diperoleh suatu grafik fungsi kuadrat. Sumbu x adalah domain dan sumbu y adalah kodomain. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebut grafik parabola. Grafik dapat dibuat dengan memasukan nilai x pada interval tertentu sehingga didapat nilai y. Kemudian pasangan nilai x, y tersebut menjadi koordinat dari yang dilewati suatu grafik. Sebagai contoh, grafik dari fungsi adalah Jenis grafik fungsi kuadrat lain 1. Grafik fungsi Jika pada fungsi memiliki nilai b dan c sama dengan nol, maka fungsi kuadratnya Pada grafik fungsi ini akan selalu memiliki garis simetris pada x = 0 dan titik puncak y = 0. Sebagai contoh , maka grafiknya adalah 2. Grafik fungsi Jika pada fungsi memiliki nilai b = 0, maka fungsi kuadratnya sama dengan Pada fungsi ini grafik akan memiliki kesamaan dengan grafik fungsi kuadrat yaitu selalu memiliki garis simetris pada x = 0. Namun, titik puncaknya sama dengan nilai c atau . Sebagai contoh = + 2, maka grafiknya adalah 3. Grafik fungsi Grafik ini merupakan hasil perubahan bentuk dari . Pada fungsi kuadrat ini grafik akan memiliki titik puncak x, y sama dengan h, k. Hubungan antara a, b, dan c dengan h, k sebagai berikut Sifat-sifat Grafik Fungsi Kuadrat a. Grafik terbuka Grafik dapat terbuka ke atas atau ke bawah. Sifat ini ditentukan oleh nilai a. Jika maka grafik terbuka ke atas, jika maka grafik terbuka kebawah. b. Titik Puncak Grafik kuadrat mempunyai titik puncak atau titik balik. Jika grafik terbuka kebawah, maka titik puncak adalah titik maksimum. Jika grafik terbuka keatas maka, titik puncak adalah titik minimum. c. Sumbu Simetri Sumbu simetri membagi grafik kuadrat menjadi 2 bagian sehingga tepat berada di titik puncak. Karena itu, letaknya pada grafik berada pada d. Titik potong sumbu y Grafik memotong sumbu y di x = 0. Jika nilai x = 0 disubstitusikan ke dalam fungsi, diperoleh y = c. Maka titik potong berada di 0, c. e. Titik potong sumbu x Grafik kuadrat akan memotong sumbu x di y = 0, sehingga membentuk persamaan Akar-akar dari persamaan tersebut adalah absis dari titik potong. Oleh karena itu, nilai diskriminan D berpengaruh pada keberadaan titik potong sumbu x sebagai berikut Jika digambarkan, sebagai berikut Menyusun Persamaan Grafik Fungsi Kuadrat Persamaan grafik fungsi kuadrat dapat dibentuk dengan syarat Diketahui tiga titik koordinat x, y yang dilalui oleh grafik Ketiga koordinat tersebut, masing-masing disubstitusikan kedalam persamaan grafik Sehingga didapat tiga persamaan berbeda yang saling memiliki variabel a, b dan c. Selanjutnya dilakukan teknik eliminasi aljabar untuk memperoleh nilai dari a, b dan c. Setelah diperoleh nilai-nilai itu, kemudian masing-masing disubstitusikan ke dalam persamaan sebagai koefisien. Diketahui titik potong dengan sumbu x dan satu titik yang dilalui Jika titik potong sumbu x adalah dan , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Diketahui titik puncaknya dan satu titik yang dilalui Jika titik puncaknya adalah , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Contoh Soal Fungsi Kuadrat dan Pembahasan Contoh Soal 1 Jika grafik mempunyai titik puncak 1, 2, tentukan nilai a dan b. UMPTN ’92 Pembahasan 1 Gunakan rumus sebagai nilai x titik puncak, sehingga Substitusi titik puncak 1, 2 ke dalam persamaan diperoleh Dari persamaan baru, substitusikan nilai ,maka Contoh Soal 2 Jika fungsi mempunyai sumbu simetri x = 3, tentukan nilai maksimumnya. UMPTN 00 Pembahasan Sumbu simetri berada di x titik puncak, sehingga Sehingga fungsi y menjadi Nilai maksimumnya Soal 3 Tentukan grafik yang melintasi -1, 3 dan titik minimumnya sama dengan puncak grafik . UMPTN 00 Pembahasan Titik puncak adalah Substitusikan nilai dan dalam persamaan Maka grafik fungsi kuadrat yang dicari adalah Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Trigonometri Vektor SPLDV & SPLTV